Search results for "Vector control"
showing 10 items of 32 documents
FOC with Resolver Implementation for PMSM Drives by Using a Low Cost Atmel SAM3X8E Microcontroller
2020
The aim of this paper is the low-cost experimental implementation of a field oriented control strategy for a Permanent Magnet Synchronous Motor (PMSM) by using an Atmel SAM3X8E microcontroller, mounted on an Arduino DUE board. In this electrical drive for PMSM, a resolver is used in order to measure the rotor position and speed: Therefore, the low-cost Arduino DUE performs not only FOC algorithm and phase currents data acquisition, but also a resolver-To-digital converter process, rotor position and speed data acquisition, and resolver signals management. The code has been implemented in the open source Arduino IDE, using C language, whereas the control and plot visualization interfaces hav…
Direct Torque Control of a Small Wind Turbine with a Sliding-Mode Speed Controller
2016
In this paper. the method of direct torque control in the presence of a sliding-mode speed controller is proposed for a small wind turbine being used in water heating applications. This concept and control system design can be expanded to grid connected or off-grid applications. Direct torque control of electrical machines has shown several advantages including very fast dynamics torque control over field-oriented control. Moreover. the torque and flux controllers in the direct torque control algorithms are based on hvsteretic controllers which are nonlinear. In the presence of a sliding-mode speed control. a nonlinear control system can be constructed which is matched for AC/DC conversion …
Two New Alternatives to the Conventional Arm-in-Cage Test for Assessing Topical Repellents
2021
Abstract European guidelines for testing attractant and repellent efficacy (i.e., Product type 19 [PT19]) have been in revision since 2017. A key topic of discussion is the current approach to evaluating topical repellents. The European Chemical Agency has stated field testing should be avoided because of mosquito-borne disease risks. However, the most common laboratory method, the arm-in-cage (AIC) test, may limit the reliable extrapolation of lab results to field conditions. This study’s main goal was to assess alternative laboratory methods for evaluating topical mosquito repellents that use mosquito landing rates more representative of those in the field. The study took place at three E…
Feedback linearization control of wind turbine equipped with doubly fed induction generator
2017
This paper focuses on several control techniques of a wind turbine of rated power of about 1 MW. In particular, a wind generator equipped with an asynchronous doubly-fed induction machine has been considered and its dynamic model in MATLAB/SIMULINK environment has been implemented. Starting from this model the feedback linearization control has been derived, and several simulations have been carried out, with the aim of compare its dynamic performances with the classical field oriented control, and with the V/f control. The results allow us to conclude that a DFIG controlled by a feedback linearization technique ensures better dynamic performance.
A General and Accurate Measurement Procedure for the Detection of Power Losses Variations in Permanent Magnet Synchronous Motor Drives
2020
The research of innovative solutions to improve the efficiency of electric drives is of considerable interest to challenges related to energy savings and sustainable development. In order to successfully validate the adoption of new and innovative software or hardware solutions in the field of electric drives, accurate measurement procedures for either efficiency or power losses are needed. Moreover, high accuracy and expensive measurement equipment are required to satisfy international standard prescriptions. In this scenario, this paper describes an accurate measurement procedure, which is independent of the accuracy of the adopted instrumentation, for the power losses variations involved…
High Performance FOC for Induction Motors with Low Cost ATSAM3X8E Microcontroller
2018
In this paper the Authors present the Arduino Due board application for an induction motor field oriented control (FOC) algorithm. The low cost Arduino Due board is equipped with a ATSAM3X8E microcontroller that performs the algorithm calculation, data processing, current signals and speed/position data acquisition. The control algorithm has been developed with the help of the open source Arduino integrated development environment, whereas a user friendly control interface, used to manage the speed or position set point, has been developed in Java language by means of an other open source software, namely, Processing. An experimental test bed has been set up in order to validate the FOC sys…
Dynamical Compensation of the Load Torque in a High-Performance Electrical Drive with an Induction Motor
2018
This paper describes a new method for dynamical estimation of load disturbance in induction motors by using Nonlinear Unknown Input Observers (NUIO). This estimation is then used to compensate dynamically the load torque in a Field Oriented Control (FOC) induction motor drive to increase its load-rejection capability. The method has been verified both in simulation and experimentally on a experimental rig.
Robust Active Disturbance Rejection Control of Induction Motor Systems Based on Additional Sliding-Mode Component
2017
This paper deals with motion control systems with induction motor, subject to severe requirements on both dynamics and steady-state behavior. The proposed control methodology could be viewed as an advancement of the standard field oriented control. It consists of two control loops, i.e., the rotor flux and the speed control loops, designed using the active disturbance rejection control method, with the aim to cope with both exogenous and endogenous disturbances, which are estimated by means of two linear extended state observers and then compensated. Moreover, with the aim of achieving total robustness, a sliding-mode based component is designed, in order to take into account disturbance es…
Input-Output Feedback Linearization Control of Linear Induction Motors Including the dynamic End-Effects
2014
This paper proposes the theoretical framework and the consequent application of the input-output feedback linearization (FL) control technique to linear induction motors (LIM). LIM, additionally to RIM, presents other strong non-linearities caused by the dynamic end effects, leading to a space-vector dynamic model with time-varying inductance and resistance terms and a braking force term. This paper, starting from a recently developed dynamic model of the LIM taking into consideration its end effects, defines a FL technique suited for LIMs, since it inherently considers its dynamic end effects. The proposed approach has been validated experimentally on a suitably developed test set-up. Furt…
Experimental investigation on high efficiency real-time control algorithms for IPMSMs
2014
This paper describes an experimental investigation on the power losses variations occurring in an Interior Permanent Magnet Synchronous Motor (IPMSM) with respect to the direct axis current component. Such investigation can be useful to determine a mathematical model accounting for copper, iron and mechanical friction losses, and for the arrangement of a speed control drive system equipped with a real-time power losses minimization algorithm. In particular, a test bench has been set up in order to carry out all measurements and the final power loss identification. The test bed is composed by a IPMSM drive with a field oriented control (FOC) strategy, a power analyzer, a dynamometric brake a…